Hazard Identification and Risk Assessment for the Use of Booster Fans in Underground Coal Mines

> Felipe Calizaya Michael G. Nelson Mahesh Shriwas

Feb 26, 2013

Outline

- Introduction
- Booster Fans in U/G Coal Mines
- Hazard Identification and Risk Assessment
- Risk Assessment Tools
- Conclusions

Introduction

Booster Fan

- An underground fan installed in a main airway and sized to handle the quantity of air needed in a section
- Installed in a permanent bulkhead and equipped with a set of airlock doors and fan monitors
- Can be used to create safer work conditions and allow the extraction of minerals from greater depths.

Merits and Demerits of Booster Fan

Merits

- Reduces main fan pressure
- Reduces air leakages
- Reduces ventilation cost.

Demerits

- Increases possibility of uncontrolled recirculation
- Increases propensity of fire
- Increases build-up of contaminants.

Booster Fan Installation Details

Custom Built Centrifugal Fan

Booster Fans in U/G Coal Mines

Sample Coal Mine

- Ventilated by exhaust system of ventilation
- Has one long-wall section and two continuous miner sections
- Has one main surface fan
- Has one main intake and two smaller intake airways
- Has a good scope for the use of booster fan.

Mine Ventilation Network

Mine Ventilation Network

Mine Ventilation Network

Requirement of Air

C M Section 1: $33.0 \text{ m}^3/\text{s}$ CM Section 2: $21.0 \text{ m}^3/\text{s}$ Longwall Face : $47.0 \text{ m}^3/\text{s}$ Bleeder System: $21.0 \text{m}^3/\text{s}$ Sealed Area: $66.0 \text{ m}^3/\text{s}$

Statement of the Problem

- Mine needs efficient and safe ventilation system to fulfill the requirements of air at the different sections of a mine while considering leakages
- It requires either single fan system or two fans system to fulfill the requirements of air.

Solutions to the Problem

Simulation Results

Fan Duty	Pressure (Pa)	Quantity (m ³ /s)	Air Power (kW)	Total Air Power (kW)					
1. Single Fan System									
Main Fan Only	5758	470	2693	2693					
2. Two Fan System									
Main Fan	4045	433	1747	2571					
Booster Fan	3063	270	824						

Installation and Commissioning

- Requires bypass drift, or widening of existing drifts, and installation of airlock doors
- Needs enough space to house the fan assembly, man doors, and condition monitoring components
- Needs manufacturer involvement during fan installation.

Evaluation Standards

Vibration (alarm): 5.5 mm/s

Bearing- Motor temperature: 85 °C

Fan duty:

5% of designed values

Hazards Identification

A hazard is anything that has potential to cause harm to miners or damage to property

Inventory of Hazards:

- Electrical: fan, monitoring malfunction
- Mechanical: moving parts
- Chemical: fires, spontaneous combustion
- Pressure: stuck in airlock door.

Hazards Identification

Unwanted Events:

- Power failure to mine
- Erroneous monitoring of read-outs
- Equipment failure
- Fires and explosions
- Recirculation of air contaminants

Risk Assessment

- <u>Risk</u> is a product of likelihood of occurrence and consequences of undesired event
- <u>Risk Analysis</u> is the process by which risks are identified, examined and their magnitudes are determined
- <u>Risk Assessment</u> is the process by which the outcome of risk analysis is compared to its risk acceptance criteria

Principles of Risk Assessment

Categories of harm severity

Catastrophic: Multiple deaths Critical: One death or multiple severe injuries Moderate: One to three severe injuries Minor: One severe injury or multiple minor injuries Insignificant: One minor injury

Categories of harm probability

Most Certain: Occurs once or twice a year Likely: Occurs less than once in year or may recur once in 5 years Possible: Has occurred or may recur in 10 years Unlikely: May occur in 20 years Rare: Has never happened

Risk Matrix

Likelihood	1 Insignificant	2 Minor	3 Moderate	4 Major	5 Catastrophic			
	Risk Rating							
5. Most Certain	5	10	15	20	25			
4. Likely	4	8	12	16	20			
3. Possible	3	6	9	12	15			
2. Unlikely	2	4	6	8	10			
1. Rare	1	2	3	4	5			
Risk Rating	Legends	Guidelines for Risk matrix						
15 to 25	(Ex): Extreme	Eliminate or avoid and implement action plan						
9 to 12	(H): High	Proactively manage						
4 to 8	(M): Medium	Actively manage						
1 to 3	(L): Low	Monitor and manage						

Risk Assessment Tools

- 1. Job Safety Analysis
- 2. Bow Tie Analysis
- 3. Workplace Risk Assessment and Control
- 4. Failure Mode Effect Analysis
- 5. Fault Tree Analysis
- 6. Event Tree Analysis
- 7. Hazards and Operability Studies

Workplace Risks Assessment and Control (WRAC)

- 1. A broad-brush risk ranking approach
- 2. Breaks down the mining process with potential hazard
- 3. Involves a flow chart with potential hazard identification
- 4. Accomplished with the use of JSA and SOPs
- 5. Identifies potential unwanted events
- 6. Includes the likelihood and consequences of each stage
- 7. Includes controls and recommended measures

WRAC (Design Stage)

Steps in process	Unwanted Events	Current Control Measures	L	С	R	Recommended Measures
Oversizing and poor location of booster Fan	Recirculation and fire	Use VnetPc software to size and site the fan	2	4	8	Check for recirculation before implement the design
Failure to design good monitoring system	Undetected fire and recirculation	Manual sampling of air	3	4	12	Follow the good practice as adopted in other country
Failure to good design airlock doors and bulkhead	Recirculation , fails to open airlock door	Airlock doors and bulkhead tested for its stability	2	4	8	Follow the good practice as adopted in other country

WRAC (Installation & Commissioning)

Steps in Process	Unwanted Events	Current Control Measures	L	С	R	Recommended Measures
Failure to measure temperature and vibrations	Recirculation, fire, damage to foundation	Fan monitoring system	2	4	8	Manual check and maintenance
Misalignment of fan shafts	Excessive vibration of fan parts	Follow manufacturers specifications	3	3	9	Alignment must be tested manually
Testing of Fan	People caught in between moving parts	Barriers and screens around the Fan	1	5	5	Safety screen, good illumination
Failure to follow SOP's	Fan not running well	Training	2	4	8	Refresher training

WRAC (Operation Stage)

Steps in Process	Unwanted Events	Current Control Measures	L	С	R	Recommended Measures
Mechanical Electrical Fault	Failure of interlocking	Main and booster fans in same circuit	2	3	6	Independent power source for booster fan
Chemical	Fire	Good house keeping	3	5	15	Good monitoring, firefighting equipment must be in place
Chemical	Buildup of mine gases	Through flow ventilation	3	5	15	Construction quality control of vent. devices
Chemical	Spontaneous combustion	Shotcreting of the roof, floor and sides of roadways	2	4	8	Booster fan located in overlying or underlying strata
Chemical	Dust buildup on blades	Water spraying during cutting and crushing	1	5	5	Scheduled Maintenance of diesel units (250 hrs)

Interpretation of Outcomes of WRAC

- All the inventory of hazards are identified during design installation and operation stage
- Major hazards would be controlled by recommended control measures
- Fire and recirculation are major hazards and need special attention to prevent them.
- Interlocking between main and booster fan must be tested and maintained in order

Failure Mode Effect Analysis (FMEA)

- Applicable to potential failure of subsystems
- Failure modes of individual items are determined
- Effect on other items and system are recognized
- Risk rank of failure item are determined
- Criticality is calculated (severity X probability)
- Control measures are prioritized based on criticality
- Bottom-up evaluation technique
- Qualitative and quantitative techniques

FMEA of A Sample Problem

Fa	ilure	Effect on		L	С	R	Controls
(Electrical)		Other	System				
1.	Failure of monitoring devices	a) Undetected environmental conditions	Undetected spontaneous heating and fire	3	5	15	Redundant sensors recalibration maintenance
		b) Undetected vibration and temperature of motor bearings	Overheating of motor source of ignition	3	4	12	Provide un- interrupted power supply
2.	Failure of power to mine site	Main, booster and bleeder fans are stopped	Whole ventilation system is collapsed	3	5	15	Generator set with standby fan

L- Likelihood C- Consequences R- Criticality or Risk rank

FMEA of A Sample Problems

Failure	Effect on	on		С	R	Controls
Mode (Mechanical)	Other	System				
 Failure of main fan 	Main fan is stopped	Ventilation is deteriorated	2	5	10	Stop booster fan and down- stream equipment
2. Failure of booster Fan	Booster fan is stopped	Ventilation is deteriorated	2	4	8	Open airlock doors, stop downstream equipment
3. Failure of airlock doors	Flow of air is stopped	Ventilation is short-circuited	2	4	8	Stop downside equipment Guide miners to refuge
						chamber

Interpretation of FMEA Outcome

- Failure of power to the mine site is an extreme risk
- Failure of the monitoring system is a high risk
- Failure of the main fan is a high risk
- Failure of the booster fan is manageable
- Failure of and airlock door is manageable; however, it can induce recirculation of air contaminants

Conclusions

- Risk Assessment is an integral part of booster fan operation in underground coal mines in others part of world
- Fire and flow recirculation are two major hazards associated with the operation of booster fans
- RA reduces the impact of undesired events, if known early
- Risk matrix information prioritizes the risks
- FMEA is used to analyze risks of system components
- WRAC is used to analyze risks by JSA and SOP
- RA is used during design, installation & operation stages

Future Work

- Fault Tree Analysis will be applied to hazards identified in the case study to determine main contributing factors
- Attempts will be made to collect field data associated with main and booster fan to quantify the risk
- The outcomes produced by WRAC and FMEA will be refined by applying a revised risk matrix
- Major hazards and risks associated with the operation of booster fans will be summarized and used to develop an operation protocol

Thank You

Booster Fan Installation Details

